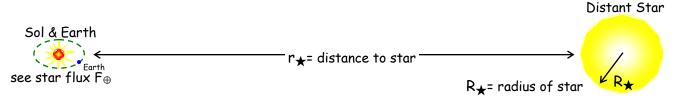
STAR TEMPERATURE AND SIZE

TEMPERATURE FROM THE LINE SPECTRUM: THE SPECTRAL CLASS

If λ_{peak} isn't known, thanks to the work of Cecilia Payne-Gaposchkin (1900-1979), the spectral class can be used to estimate the temperature. This is done by interpolation between the minimum and maximum temperatures of each spectral class:

Temperature from Spectral Type
$$T = T_{\text{max}} - \left\{ \left(\text{subclass} \right) \times \left(\frac{T_{\text{max}} - T_{\text{min}}}{10} \right) \right\}$$

Here the subclass is the number given with the spectral type (e.g. the 2 in Sol's G2), T_{max} is the highest temperature in the spectral class and T_{min} is the lowest.


SIZE OF AN OPAQUE, SPHERICAL STAR: THE STEFAN-BOLTZMANN LAW:

The Stefan-Boltzmann law relates the luminosity of a star to its temperature and its emitting surface area $(4\pi R^2)$

RADIUS FROM LUMINOSITY AND TEMPERATURE $R_{\star} = \sqrt{\frac{L_{\star}}{4\pi\sigma}T^{4}}$

where R_{\star} is the radius of the star in m, σ = 5.67 × 10⁻⁸ W/M²K⁴, R_{\odot} = 6.96 × 10⁸ m, and r_{\oplus} = 1.496 × 10¹¹ m.

STAR	FIELD GUIDE TO THE STARS AND PLANETS TABLE A2				CALCULATED FG A3 LUMINOSITY SIZE					
	V	M_V	r _★	Spec. Type	T K	L _{★,SOL} In L _{sol}	L _★ In Watts	R _★ Billions of m	R _★ /R _⊠ (number)	R _★ / r _⊕ %
Polaris (α UMi)	2.0	-4.1	431	F5 I	6,750	3698	1.42 × 10 ³⁰	30.9	44.4	20.7
Vega (α Lyr)	0.03	0.6	25	<i>A</i> 0 V	11,000	48.8	1.87 × 10 ²⁸	1.34	1.92	0.89
Deneb (α Cyg)	1.25	-7.5	1467	A2 I	10,300	84,723	3.24 × 10 ³¹	63.6	91.4	42.5
Altair (α Aql)	0.77	2.1	17	A7 IV	8550	12.2	4.69 × 10 ²⁷	1.11	1.59	0.74
Betelgeuse (α Ori)	0.5	-5.0	522	M2 I	3400	8472	3.24 × 10 ³⁰	184.5	265	123
Alnitak (ς Ori)	2.05	-5.5	817	09.5 I	25,750	13,428	5.14 × 10 ³⁰	4.05	5.82	2.71

$$L_{\star} = 10^{\left(\frac{M_{Sol}-M_{\star}}{2.5}\right)} L_{Sol} \qquad \text{and} \qquad L_{Sol} = 3.83 \times 10^{26} \;\; \text{Watts}$$

Which star impresses you the most? Why?

← Don't skip this!